Indexed Sequential files in Ada.

A didactical example.

By Marc A Gobin

Objective.

The working of a data base management system can informally be explained in terms of
an interrelated set of indexed files, together with the necessary routines to access all the
elements of the file.

The routines, one can find in a DBMS, should be implementable in a straightforward
way from the routines available in an indexed file system. This imposes some requirements
on the indexed file system to be built.

Requirements.

Th indexed file system should be implemented in such a way that following
requirements hold.

Each (logical) record of the file is identified by one key. This is the main key of the
file, sometimes referred to as key 0. Each data record has a different key. The key is
part of the record. An example of such a uniquely defined key is the personal
number given to each person of a company.

Defining a certain number of secondary keys must be possible. These keys are not
necessarily unique. If the name of a person is considered as such a secondary key, it
is very well possible that two persons have the same name. It is even possible that all
keys have the same value (a not very interesting key).

The keys may be of any type or combination of types.

Direct access to any record should be possible when one of the keys is given. In the
case of a secondary key, where several records can have the same key value, the first
of these records is given.

Sequential access must be possible. The sequence is determined by one of the keys
and the data records are retrieved in ascending order of the specified key. If more
than one record has the same key, they are retrieved in ascending order of the main
key.

Updating a record must be possible. Even the secondary keys can be modified. The
main key can not be changed. If this is needed, the record with the old key must be
deleted and the record with the new key must be written to the file.

In order to achieve its didactical purpose, the specification of the package should be
as close as possible to the specification of the package Ada.Direct io.

3.

e The implementation should be simple enough so that it can be explained in a
minimum of time and with a minimum of knowledge. Yet the implementation must
be efficient enough so that potential users can be satisfied.

The specification.
with io exceptions, aux io exceptions, Ada.Direct io ;
generic
type element type is private ;
package indexed io is
type file type is limited private ;
type file mode is (in_file, inout file, out file) ;
type relation type is (greater equal, equal, greater) ;

procedure create (file : in out file type ;

mode : in file mode := inout file ;

name : in string := ""

form : in string) ;
procedure open (file : in out file type ;

mode : in file mode ;

name : in string ;

form : in string := "")
procedure close (file : in out file type) ;
procedure delete (file : in out file type) ;
procedure reset (file : in out file type ;

mode : in file mode ;

key number : in integer := 0) ;
procedure reset (file : in out file type ;

key number : in integer := 0) ;
function mode (file : file type) return file mode ;
function name (file : file type) return string ;
function form (file : file type) return string ;
function is open (file : file type) return boolean ;
procedure read (file : in out file type ;
item : out element type) ;

generic

type key type is private ;

default key number : integer := 0 ;

procedure read by key (file : in out file type ;
item : out element type ;
key : in key type ;

key number : in integer := default key number ;

relation : in relation _type := equal) ;
procedure write (file : in out file _type ;

item : in element type) ;
procedure update " (file : in out file _type ;

item : in element type) ;
procedure delete “element (file : in out file _type) ;
function end of file (file : file type) return boolean ;
status_error : exception renames

io_exceptions.status_error ;

mode error : exception renames

io_exceptions.mode_error ;
name_error : exception renames
io_exceptions.name_error ;
use _error : exception renames 1o _exceptions.use error ;

device error : exception renames
io_exceptions.device error ;
end error : exception renames io exceptions.end error ;

data error : exception renames
io_exceptions.data error ;
key error : exception renames
aux_1io exceptions.key error ;
existence error : exception renames
aux_1io exceptions.existence error ;

private
-- implementation defined

end indexed io ;
Notes :

The types, most procedures and all the functions are similar to those defined in the
package Ada.Direct io. They have also the same meaning.

The procedure create has one important modification. The form parameter is not an
empty string, but contains the information concerning the record length, the
length and position in the record of each of the keys. This position and the
length are expressed in the number of bytes.

Here is an example of the contents of a form parameter :

“Record ; size 200 ;" &
“Key 0 ; length 6 ; Position 0 ;” &
“Key 1 ; length 20 ; Position 6 ;” &

“Key 2 ; length 4 ; Position 64 ;"

The data records have a length of 200 bytes, the main key has a length of 6
bytes and starts at position 0 of the data record. There are two secondary
keys with lengths 20 and 4 respectively and positions 6 and 64. A
maximum of 9 secondary keys is allowed.

The procedures reset contain a key number which allows a user to position the
system at the first record according to the specified key.

There are three new procedures :

— Read by key is a generic procedure that performs a direct read from the
data file for a given key. The type of the key and the key number are the
generic parameters. The procedure itself has five parameters :

The file from which the record is to be read.

The zone in memory that will receive the retrieved record.

The value of the key.

The key number.

An indication equal, greater or greater equal, allowing to search
for a key that is =, > or >= than the specified key.

— Update is a procedure that allows an existing record to be updated. If
there is no record with the same main key, the exception existence_error

4.

is raised. For write there may be no record with the same main key,
otherwise key error is raised.

— The procedure delete _element allows the suppression of the last retrieved
record.

The physical implementation.

On creation, there will one data file and one file for each of the keys declared in the
form parameter of the create instruction. All these files are of the same type i.c.
Ada.Direct io.-file_type. The corresponding package, an instantiation of Ada.Direct io is
declared with an element type of a string of 512 characters.

In the data file all records (of the own generic type element type) are split and/or glued
together as to fit succeeding blocks of 512 characters. The generic type element type is a
fixed length type. The order of the records in the file is of no importance. They are put in
the order of arrival and there is a linked list of deleted records so that new records are first
used to fill up the gaps that are left by formerly deleted records.

A block in the key files contains following information :

‘ ‘key ptr‘ key ptr ‘key ptr ’ ‘

The first field contains the number (in two bytes) of the first free byte in the block. All
other fields are composed of a key and a four byte pointer. The meaning of these pointers
depends on the number of records in the file and on the length of the key.

1. The number of records is so small that all keys can fit in one block. In this case all
keys are kept in ascending order in this unique block and the pointers point to the
data record in the data file (record number and position of the first byte). The
number of records that can be serviced depends on the length of the key. This
number is equal to 510 / (/ + 4) where [is the key length. There must be at least two
records in one block, which means that no key can be longer than 251 bytes.

2. A two level system is used when the number of records exceeds the number of
records of the previous paragraph. Let us consider a key length of 10 bytes. This
means that 36 keys can fit in one block. If there are 1000 records, they cannot fit in
one block. They are spread over some 30 blocks. In each block the keys are in
ascending order. One additional block contains an ordered list of the 30 last keys of
each block. This last additional block is the level one block. In a search proces the
first level block is read and the first key encountered that is larger than or equal to the
searched key gives us a pointer to the block containing the right key. This one points
to the data record.

3. If the number of data records increases, the number of levels may increase also.
Remark that for n levels the total number of records can be as large as k ** n, where k
is the number of keys per block. For a key length of 10, & is equal to 36. The number
n is limited to 20. Note that 36 ** 20 = 1E31. Even for keys of length 251, k is equal
to 2 and 2 ** 20 = 1000000.

S.

Searching for a record with a given key.

To find a record with a given key (K), we start reading the first record of the appropriate
key file. This record contains a list of keys in ascending order, together with pointers to
records in the same file, but for the next level. The first record is searched through in order
to find the first key greater or equal to K. The corresponding pointer is used to retrieve a
record of the next level.

This operation is repeated for each level. The pointer in the last level points to a place
in the data file (record number and position in the record). In this way the data record can be
retrieved.

To function properly the keys must be in ascending order within each record. But the
records themselves may be in any order. The only record of the first level is the first record
of the key file.

In the generic procedure read by key, the last parameter can be “greater” or
“greater _equal”. If this is specified, than the key that is searched for will be strictly greater
or greater or equal than K. This allows e.g. to look for a name for which only the first letter
is given.

Inserting a new record.

The different keys are inserted in each of the key files. For each key to be inserted we
initiate the search procedure and we keep in memory the different blocks for each level. In
the data file the data record may be inserted anywhere. Normally it is written at the end of
the file, but after the deletion of one or more records we put the new record in the same place
as one of these deleted records. For each deletion we keep in fact a linked list of the
available places.

In the last level of the key files, the new key is inserted if there is space left in that
block. If the new key is larger than all existing keys, the new key is simply added at the end
of the record and the record of the higher level is adapted accordingly. If there is no place
left in the record at hand, than this record is split in two and the higher levels are adapted
accordingly. If the splitting takes place on the highest level, a new level is added the highest
level containing only the two blocks resulting from the splitting.

The splitting can be visualised as follows (a and b are block addresses) :
a: keyl kev2 key3 key4 key5 |

On inserting a new key between key 3 and key 4, the modified blocks are :
a: \kevl kev2 key3 \

b: \ newkey kev4 key S ‘

In the higher level the indication “key 5 a” is replaced by two indications : “key 3 a”
and “key 5 b”. If there is not enough place for the insertion this block is split up also,
giving raise to an insertion in the higher level. If the highest level is to be split, a new level
is added to the system.

The splitting of records is not done in two halves if the key to be inserted is larger than
all the existing keys. This is done because on creation the keys should be given in ascending

order filling up the whole available space. Of course this cannot be done simultaneously for
all keys. It is done for the main key only.

Deleting records.

In the data file the record is marked as deleted and added to the list of deleted records.

In the key files, the key and its pointer are removed. Ifit is the highest key in the record,
the indication in the higher level is adapted. This may be repeated, if it is the highest key on
this level.

If the whole block becomes empty, the block is added to the list of deleted blocks. On
the higher level the indication is removed.

If the record of the first level contains only one key and if there is more than one level,
the number of levels is reduced by one.

The current key.

On sequential access, the read command reads the next record according to the key
sequence of the current key.

When the file is opened, the current key is the main key (key 0). When issuing a reset
or a read by key command the current key can be changed. At every moment in the
program a sequential read may be used. It will take the record following the last record read,
according to the current key. After the opening of the file or after a reset, the first key is
taken.

Possible improvements.

e Portability.

The package has been written for the gnat compiler running in PC. The only changes that
need to be made to make the package compatible with other systems and with any
Ada83 compiler are the following ones :

— instead of integers one should use its own integers defined as 32 bit integers.

— The predefined packages used are now defined as child packages of the
package Ada. For the use with Ada83 compilers the prefix “Ada.” should be
removed in the context clauses from the packages “Ada.Direct i0” and
“Ada.Unchecked -conversion”. The package Ada.Integer Text io should be
replaced by ones own instantiation of Text io.Integer io.

e Variable length records.

In the data file the logical records are now for fixed length records. It is not difficult to
allow for variable length records. One has to keep track of the length of each
record, which has to be registered together with the record itself. The routines that
perform the linking of free space will get more complex.

e Block length.

The length of each physical block is now fixed at 512. This limits the length of the keys
to 166. The block length can be increased or can be made a second generic
parameter of the whole package.

e Key types.

The keys are now treated (by Ada.Unchecked conversion) as strings. The comparisons
are done as for strings. This means that e.g. integers will be compared byte per
byte and this sequence does not correspond to the sequence of integers. To search
for a given key does not cause any problem, but the sequence is not the expected
one. A solution could be to add more generic parameters, together with a generic
function for comparing keys. This is in conflict with the didactical simplicity we
were looking for.

10. Conclusions.

The proposed package is a useful didactical instrument that can be used in non
professional applications. It is sufficiently efficient and satisfies most of the criteria set forth
at the start of the project.

The package must be considered as freeware. It is available for free, but copywriting the
package or parts of it is not allowed.

